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Gain Optimization of a Near-Field Focusing
Array for Hyperthermia Applications

JOSEPH T. LOANE III AnD SHUNG-WU LEE, FELLOW, IEEE

Abstract — A new variation of the array gain optimization problem has
arisen in the study of microwave arrays used for hyperthermia, the heating
of biological tissue. For a given array configuration and arbitrary medium
it is desired to maximize the power deposition at a prescribed focus in the
near field of the array. This paper shows how the optimum excitation may
be found by solving an eigenvalue problem. Our optimum solution is
compared with two other solutions, namely a closed-form solution which
optimizes the power in one linear polarization of the radiated field, and a
solution based on the popular conjugate-field scheme.

I. INTRODUCTION

NEW VARIATION of the array gain optimization

problem has arisen in the study of microwave arrays
used for hyperthermia, the heating of biological tissue. For
a given array configuration and arbitrary medium it is
desired to maximize the power deposition at the observa-
tion point in the near field of the array, analogous to the
lossless case of radiation maximization in a particular
direction. In this formulation the medium need be neither
homogeneous nor lossless, and the array elements need not
be identical.

For a given array and desired focus, this paper shows
how the optimum excitation may be found to produce
maximum power deposition, which is proportional to the
specific absorption rate, at a focus in the near field of the
array for unit input power. This is a generalization of the
far-field formulation of Lo et al. [1] in which only one
received polarization is maximized. Some practical cases
are simulated with both lossy and lossless media, showing
that the formulation of [1] gives results that closely follow
the optimum when the dominant polarization from linearly
polarized radiators is maximized. A comparison is also
made with the conjugate-field or time-reversal excitation
[2]-[4], a scheme which is slightly less efficient in most
cases and which causes significantly higher focal shifts for
some off-axis scan situations.

II. FORMULATION OF THE PROBLEM

Consider the antenna array of N elements sketched in

Fig. 1. We assume a rather general situation such that (i) .

not all elements are identical, and (i) the medium is
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Fig. 1. Arbitrary geometry for general array problem.

inhomogeneous with scatterers present. We wish to deter-
mine the current excitations {I,I,,---,Iy} of the N
elements to achieve the maximum power deposition at a
prescribed focal point F for a fixed input power to the
antenna. To this end, let us define the gain of the array as
the magnitude squared of the total E field at the focus
divided by the total input power to the array. The gain g
may be written as the ratio of the quadratic forms:

_crs

8= (IR (1)

where the N-element array is seen as an N-port network
with current vector I') directed intc the ports. The N X N
real symmetric matrix R is the real part of the mutual
impedance matrix; i.e, R=Re Z and the total input
power is-

P, = (IRI*) =Re(IZI*)
since Z is complex symmetric. The clements of the Hermi-
tian matrix C are
Cmn = C*nm = Vm' V*n

or, equivalently, C =¥)-(¥V*. We define V,, the element
of (V' =[V,, -+, ¥y, as the vector E field at the focus F
due to a unit current entering port » with all other ports
open-circuited (I, =1; I, =0, m # n). Then the total |E|
at the focus is '

|E(F)? = (ICI*) = (IV)-(V*I*). 2

In summary, the problem at hand is to maximize g in
(1) by varying current I).
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III. OpTiMUM GAIN SOLUTION

Given the desired focus, we want the solution 7) to
make g stationary with respect to 61), which may be
found by setting the first variation §g equal to zero. The
solution of I*) is the eigenvector of the generalized eigen-
value problem

CI*) = gRI*) )

corresponding to the largest eigenvalue g [5]. This result
follows directly from [1, appendix, eq. (22)], with A=R
and A =0. By physical arguments, R is positive definite
and C is at least positive semidefinite, so that g from (1) is
nonnegative, finite, and real for any observer. In arrays
with elements separated by more than about 0.2\, the
mutual resistance matrix R is nonsingular and well condi-
tioned [1]. Therefore, the eigenvalue problem could be
written in the standard form R™'CI*) = gI*), but (3) is
better suited for numerical solution [6]. Standard reduction
routines have no trouble solving this equation for practical
cases.

1IV. GaN OpTiMIZATION USING ONE
POLARIZATION

A. Linear System Solution

To illustrate, consider the case of electric dipole ele-
ments polarized in the x direction. Let the array and the
medium both be symmetric such that for an observation
point in the yz plane (the H plane), XV, =XV, =0,
where V,, V., V,, are the components of V,. Fig. 2(a)
shows an example of such an array with normal axis z.
The optimum gain solution of 1) reduces exactly to

I*y=R"'V,) (4)

where (V,=(V-£=[V,,---,V,y]. This I*) is the opti-
mum eigenvector of (3) in the H plane by a symmetry
argument. Andersen [8] discusses this solution for a focus
on the normal axis of an array in the above situation. In
the given geometry, the optimum /) must also be dis-
tributed symmetrically, so that at the focus

(V) =1V;)=0 (5)
V.), V,), and V,) being similarly defined; then the total
field {(1V') = £(IV,). The vector CI*) can be written as
CI*y =V)-(V*I*)
= Vo VH L) + VXV, 1)+ VOV, 1)
=V VAT

(5) being the sufficient condition for the last expression. In
our geometry, (3) becomes

g W (V¥ I*) = RI*).

Since the multiplier of V,) is a scalar, the optimum
eigenvector /*) is uniquely determined by (4) along with
its real eigenvalue:

g=(V*R7'V,)
(or g={IV,) if I) from (4) has already been calculated).
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Fig. 2. Focusing array geometry. (a) Equispaced hexagonal array. (b)
Pattern cuts.

This formulation is identical to that described by Lo et al.
[1] for maximizing the directive gain of a conventional
array. For a focus in the far field of an array of identical
elements, the closed-form matrix solution (4) must ap-
proach the optimum as the distance from the source to the
focus increases.

Consider a more general array in homogeneous space,
whose elements all radiate the same elliptical polarization
0+ acf:) in a desired direction (#,¢). Then the optimum
solution converges to

%y =R"'%,)

where (V, = (V@ = [V, -+, Von] as the focus recedes to
infinity. This is because the vector CI*) approaches

CI*) =V -(V*I*) = (1+]a’ )V )(V*I*)
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where V) = (6 + a&>)V0>. Unit vectors § and ¢ are defined
by the line from source to focus, and {Vj,, -, V,y} and a
are complex scalar quantities.

From (1) through (5), all of our formulation has been
exact, but in hyperthermia applications a solution to (3)
would be impractical because of the necessity of knowing
all three components of V,. It is simply not possible to
know all of the dielectric properties within a particular
volume of living tissue. A small probe might be temporar-
ily implanted at the focus in order to obtain enough
information about element contributions for a focusing
array to be effective. A monopole at the end of a very thin
coaxial line is a practical way to do this; a triply polarized
implant for UHF wavelengths is probably not feasible.
However, a reasonably approximate solution may be had
by utilizing the symmetric array example above with a
singly polarized receiver. It will be of interest to see how
the array focusing ability is affected by looking at patterns
and currents when the excitation of (4) is used instead of
the optimum. As will be shown, the results of optimizing
one dominant polarization follow very closely the opti-
mization of |E|? even for foci out of the H plane.

B. Conjugate-Field Matching

Another method using one polarization is the
conjugate-field (retrodirective, or time-reversal) matching
scheme discussed by many authors [2]-[4]. Conjugate-field
matching amounts to ignoring mutual coupling in (4),
thereby eliminating the requirement of a linear system
solution for each desired focus since the matrix R is taken
to be diagonal. For identical elements, the solution be-
comes

I)=v*) (6)
for dominant x polarization, implying a uniform cophasal
distribution in the far-field case. In the near as well as the
far field, (6) produces a good but not optimum |E|?
pattern, as we will show by comparison. Of course, the
exact matrix R becomes more nearly diagonal as element
spacing increases, so that for identical elements the conju-
gate-field excitation approaches that of (4) for the polar-
ization chosen.

C. Q-Factor and Sensitivity

Another useful parameter which depends on both the
array geometry and the excitation is the Q factor [1],
defined by

(1)
T AL

where A is the resistance matrix due to radiation only; i.e.,
(IAI*) is the radiated power. For lossless elements 4 = R.
and if radiation in a single lossless medium is considered,
A is equivalent to the integral n~'f{Cds over a large
sphere. The Q factor is proportional to the total ohmic loss
when elements are identical. However, if a case is consid-
ered where elements radiate in a lossy medium, the Q
factor loses some of its meaning because ohmic loss is
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distributed in the near field as well as within the elements.
The definition of radiation resistance in A4 becomes rather
arbitrary in such a case. In hyperthermia, one would desire
a protective “matching section” between array and tissue,
either a lossless slab of material or a (lossy) layer of liquid
coolant (in which case one might want to integrate E X H*
over the interface between coolant and tissue).

Perhaps a more useful parameter to compare between
different excitations is the sensitivity factor [1], defined as

)
- ICr*y

which does not depend upon A, and which depends on the
well-defined input resistance matrix R only indirectly
through choice of I'). For identical elements, S is propor-
tional to ohmic loss divided by the total |E|* at the desired
focus. S and Q both grow as mutual coupling increases,
becoming very large for supergain [1].

V. NUMERICAL RESULTS

By using a far-field approximation for individual ele-
ment patterns, one can observe qualitative effects on the
performance of a focusing array as individual parameters
are varied. We have modeled situations for near-field foci
with the 19-element x-polarized array shown in Fig. 2.
Calculated array patterns for different excitation methods
are compared in a lossy medium with a lossless matching
section in front of the array. For the model used in
approximating the interface effects, refer to the Appendix.
The relative permittivities chosen (1 and 1-0.3j) are
simply those of saline body water at around 2 GHz and a
reasonable matching section normalized to about 80¢,. For
the applications we have in mind, the most appropriate
pattern cuts are those parallel to the plane of the array.

As in the far-field situation, for element spacings less
than about A /2 the optimum and matrix-solution gains
for near-field focusing are much higher than that of the
conjugate field, but for larger element spacings the three
excitations all approach the same solution. Near-field fo-
cusing produces few nulls, less distinct side lobes, and
generally lower grating lobes, since the current distribution
is not progressively phased as in far-field beam steering.
E-plane scans demonstrate that the differences between
matrix solution and optimum excitation are very small. It
follows that a monopole probe could be used in practice to
optimize array performance. When the array is scanned
off-axis, significant focal shifts are predicted for a near-field
focus, especially in a lossy medium. The findings are
explained below.

An incident (cos #)? pattern is assumed using identical
elements with symmetric E- and H-plane patterns; i.e.,
qr = 4y = g, so that the relative pattern of an x-polarized
element » is

e—jkr" R R
vV, ~ . (cos@,) q(ﬂncos 6, — o, sin¢n),

n

0<8,<90°
(7)
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where the subscript n denotes dependence upon element
location. For elements less than a whole wavelength across,
the far-field approximation should be useful as near as 2A
away [9], [10]. For relative power studies in this paper, we
assume lossless elements and let n=1, 0 =gS, and 4=R
= [[Cds, integrated over a large hemisphere. For integer
g, the R matrix of radiation resistance can be computed in
closed form, leading to the expressions [7]

sin &
Rmn=277( 5 ) forg=0
R 5 sind  cosd ¢ 1
mn W( 83 82 ) org =
and
R 673 1\ . 5 3 5 ; 5
mn = 5T (F—g)sm 52 o8 org=
where 8 = kd,,,, the element separation in radians. The

wavenumber k must apply to a lossless medium in front of
the array with negligible element coupling due to backscat-
ter for this approximation to be worthwhile.

A. Power Decay away from an Aperture

According to the scheme shown in Fig. 2, pattern plots
show cuts parallel to the array with |E|* in decibels on the
vertical axis, and wavelengths on the horizontal axis with
the focus centered at zero. For an axial focus (x, = y, = 0),
a pattern cut along ¢ = 90° lies in the H plane. The origin
of the coordinate system coincides with the array center.
The elements are numbered as in Fig. 2(b).

Fig. 3 shows power contour plots in the H plane for the
same size aperture (2A diagonal) with different source
distributions. The element arrangement in Fig. 2(b) is
continued to three rings and a total of 37 elements 0.33A
apart. A 2\ lossless matching section is incorporated, and
|E|? contours are computed 3 dB apart in the lossy region
for both optimum (near supergain [1}) and conjugate-field
excitations. In such a lossy medium, there is very little
difference in the decay rate away from the aperture regard-
less of the excitation method of an array, implying that
little can be done by way of excitation method to decrease
surface heating. With conjugate-field excitation, having
only 19 elements in the same size aperture leads to practi-
cally the same power contours, approximating spherical
wave propagation in the medium.

B. Focal Shift

In a lossless medium, the focal shift that occurs for
near-field array focusing is on the order of the focal shift
observed in front of parabolic reflectors, the latter caused
by the geometrical optics divergence factor [9] (see the
Appendix) competing with the phase-reinforcement princi-
ple. An r~! divergence factor in the near field contributes
to a focal shift toward the array. The situation is greatly
exaggerated by amplitude decay when the focus is in a
lossy medium. For the medium geometry sketched, pat-
terns are shown in Fig. 4 demonstrating the focal shift as
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the array is scanned from foci at (2A,0,4A) to (4A,0,4X).
A spacing of 0.53\ and an element g =2 were chosen.
Lateral focal shift versus off-axis scan distance for a range
of foci is plotted in Fig. 5. Note the considerably higher
shift for conjugate-field excitation compared to the opti-
mum. For the lossless medium case (not shown), the
maximum power level occurs roughly 20 percent closer to
the normal axis than the desired focus, and for the two-
medium case it occurs roughly 40 percent closer. In Fig. 6
the focal gains for Figs. 4 and 5 are plotted as the focus is
moved off-axis, i.e., the optimum gain at focus (x,,0,4A)
versus x,. The corresponding case with d = 0.8A is shown
on the same graph.

C. Grating Lobes

Although the excitation is no longer progressively phased
for foci in the near field, the distribution is evidently
progressive enough to produce grating lobes for certain
scan situations. If the element spacing and the angle from
the array center to the focus are such that a far-field scan
would produce visible grating lobes, then one should at
least be cautious in the near field. In Fig. 7, the element
spacing is fixed at d = 0.8\ and the array is scanned to the
focus (4A,0,4)0), for which isotropic elements exhibit a
large grating lobe. While the grating lobe level might be
acceptable as far out as focus (3A,0,4)\), a gain loss of
more than 5 dB from axial scan (see Fig. 6) would proba-
bly rule out such operation. For focusing near the array
axis, grating lobes are not apparent in planar pattern cuts,
but their effects are still there, heating the medium closer
to the interface. Nevertheless, it would be acceptable to
use elements more widely spaced than in a conventional
array provided that a satisfactory cooling method existed
to pump heat away from the surface.

VI. CONCLUSIONS

We have an exact theory of |E|? gain optimization for a
general array focusing in an arbitrary medium. Mutual
coupling is accounted for, and elements may be nonidenti-
cal, may be placed anywhere, and may have any polariza-
tion. However, good results in a practical situation may be
obtained with a singly polarized array and copolarized
probe.

Accurate |E|? optimization at a focus is possible using a
probe that is singly polarized in the dominant direction. If
one can afford it, the most power-efficient system would
involve solving N simultaneous equations. The same phase
and amplitude measurements are needed for E, ) in both
conjugate-field and matrix excitation methods. The slight
gain increase possible by monitoring all three polarizations
is probably not worth the trouble. We do not consider the
possibility of supergain.

Maximizing the power at one point does not imply that
that is the maximum power point over a region in space. A
hyperthermia array would primarily localize interior heat-
ing in planes parallel to the surface. If diseased tissue in a
body is at such a location that the array must be scanned,
the focal shift described earlier may arise and it would be
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Fig. 3. Power contour plots in the H plane for the sketched medium, in decibels relative to power at focus (0,0,4).
Aperture diagonal 2). (a) Medium geometry; (b) 37 elements, d = 0.33A, optimum gain, focal power 2.73 dB above (c); (¢)
37 elements. d = 0.33), conjugate-field excitation; (d) 19 elements, d = 0.5A, conjugate-field excitation, focal power 0.39 dB

above (c).

necessary to scan the radiation past the desired focus. Of
course, an attempt to scan too far to the side is self-defeat-
ing in a lossy medium.

In this study we are interested in heating tissue inside of
a body while minimizing the heating on the surface. It is
therefore desirable to use a matching section such as the

one described to keep the near fields of the elements away
from healthy tissue. For deep power penetration it is
necessary to take away excess heat at the surface: it is
safest to assume that the power level will decrease in any
direction away from a practical array, due to the high
losses inherent in biological media.
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Fig. 4, E-plane |E|? patterns in the medium sketched for different foci,
showing focal shift. Nineteen elements, d =0.53\, ¢=2, focus=
(x,,0,40), ¢ =0° cut. Optimum gain = solid line; matrix solution =
hatched line; conjugate-field = dashed line. (a) x, = 2A: (b) xp =4\,

APPENDIX

A practical geometrical optics approximation for propa-
gation across an interface between two arbitrarily lossy
media has been suggested by Gee ef al. [7]. Given that
a point source in a homogeneous medium of complex k
will produce a spherical wave which propagates as
exp(— jkr)/r in the far field, the field behavior appears
locally as a plane wave. With the addition of an interface
as in Fig. 8, an incident field

e —jxky sl ~jzk; cost
(with 6, real) in medium 1 must propagate as

—yxky sinl) —jz (k3 — ki sing;) /2
ki

e Im (k3 - k2 sin6,)"%] <0
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line; conjugate-field = dashed line.
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Fig. 6. Focal gain as a function of scan for d=0.53A and 0.8A.
Nineteen elements. g =2, focus = (x,.0.,4)). Optimum gain = solid
line; comyugate-field = dashed line. (For d = 0.8X the difference is less
than 0.11 dB.)

in medium 2. If we decompose the propagation vector in
medium 2 into real and imaginary parts as k, =B — ja,
then the amplitude and phase gradients,

a=—%(Imk,)sind, —£Im [(k% — k3 Sin201)1/2]
and

B= £(Rek,)sing, + ¢ Re| (k3 — ki sin’d,)"’]



LOANE AND LEE: GAIN OPTIMIZATION OF A NEAR-FIELD FOCUSING ARRAY

-10

(1]

{12 (dB)
]
o
O

21

(3]

(4]

X/ [5]

Fig. 7. E=plane pattern in the medium sketched, taken through a 6
grating lobe. Nineteen elements, d =0.8\, g=0, focus = (4A,0,4)), 16)
¢ = 0° cut. Optimum gain = solid line; matrix SOlLIthIl hatched line;

conjugate-field = dashed fine. 7

42 [8]
p (ppi2) BT
d, 8 2 [10]

interface

L
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Fig. 8. Definition of ray parameters.

respectlvely, are not parallel unless argk, = argk,. The
approximation used is that the observation point may be
taken to be on the vector B; i.e., the phase behavior is
retained along k; from a point source and then along B. A
numerical root-finding method is used to find 6,, given the
source and observation points.

~ In all geometrical optics applications in this paper, we
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where

The angle 6, is measured between [ and Z.
It can be shown [10] that the above approximation is
good for the purposes of this work.
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