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Gain Optimization of a Near-Field Focusing
Array for Hyperthermia Applications

JOSEPH T. LOANE III AND SHUNG-WU LEE, FELLOW, IEEE

Abstract —A new variation of the array gain optimization problem has
arisen in the stody of microwave arrays used for hyperthermia, the heating

of Wlological tissne. For a given array conf@ration and arbitrary medium

it is desired to maximize the power deposition at a prescribed focns in the

near field of the array. This paper shows how the optimnm excitation may

be found by solving an eigenvafue problem. Our optimum scdntion is

compared with two other solutions, namely a closed-form sohrtion which

optimizes the power in one linear polarization of the radiated field, and a

solution based on the popular conjugate-field scheme.

I. INTRODUCTION

A NEW VARIATION of the array gain optimization

problem has arisen in the study of microwave arrays

used for hyperthermia, the heating of biological tissue. For

a given array configuration and arbitrary medium it is

desired to maximize the power deposition at the observa-

tion point in the near field of the array, analogous to the

lossless case of radiation maximization in a particular

direction. In this formulation the medium need be neither

homogeneous nor lossless, and the array elements need not

be identical.

For a given array and desired focus, this paper shows

how the optimum excitation may be found to produce

maximum power deposition, which is proportional to the

specific absorption rate, at a focus in the near field of the

array for unit input power. This is a generalization of the

far-field formulation of Lo et al. [1] in which only one

received polarization is maximized. Some practical cases

are simulated with both lossy and lossless media, showing

that the formulation of [1] gives results that closely follow

the optimum when the dominant polarization from linearly

polarized radiators is maximized. A comparison is also

made with the conjugate-field or time-reversal excitation

[2]-[4], a scheme which is slightly less efficient in most

cases and which causes significantly higher focal shifts for

some off-axis scan situations.

II. FORMULATION OF THE PROBLEM

Consider the antenna array of lV elements sketched in

Fig. 1. We assume a rather general situation such that (i)

not all elements are identical, and (ii) the medium is
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Fig. 1. Arbitrmy geometry for general array problem.

inhomogeneous with scatterers present. We wish to deter-

mine the current excitations {11, 12,. ... lN } of the N

elements to achieve the maximum power deposition at a

prescribed focal point F for a fixlad input power to the

antenna. To this end, let us define the gain of the array as

the magnitude squared of the total E field at the focus

divided by the total input power to the array. The gain g

may be written as the ratio of the quadratic forms:

(ICI”)

g= (IRI*)
(1)

where the N-element array is seen as an N-port network

with current vector 1) directed intcl the ports. The N X N

real symmetric matrix R is the real part of the mutual

impedance matrix; i.e., R = Re Z and the total input

power is,

Pin = (IRI*) = Re(IZI*)

since Z is complex symmetric. The (elements of the Hermi-

tian matrix C are

Cmn = C“nm= Vm’V“n

or, equivalently, C = V). ( V*. We define Vn, the element

of (V=[vl,. ... V~], as the vector E field at the focus F

due to a unit current entering port n with all other ports

open-circuited (Ifl = 1; IM = O, m # n). Then the total IEI 2

at the focus is

IE(F)12= (ICI*)= (W). (V*I*). (2)

In summary, the problem at hand is to maximize g in

(1) by varying current 1).
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111. OPTIMUM GAIN SOLUTION

Given the desired focus, we want the solution I) to

make g stationary with respect to 81), which may be

found by setting the first variation i3g equal to zero. The

solution of 1*) is the eigenvector of the generalized eigen-

value problem

CZ*)= gRI*) (3)

corresponding to the largest eigenvalue g [5]. This result

follows directly from [1, appendix, eq. (22)], with A = R

and A = O. By physical arguments, R is positive definite

and C is at least positive semidefinite, so that g from (1) is

nonnegative, finite, and real for any observer. In arrays

with elements separated by more than about 0.2X, the

mutual resistance matrix R is nonsingular and well condi-

tioned [1]. Therefore, the eigenvalue problem could be

written in the standard form R-%1*) = gI* ), but (3) is

better suited for numerical solution [6]. Standard reduction

routines have no trouble solving this equation for practical

cases.

IV. GAIN OPTIMIZATION USING ONE

POLARIZATION

A. Linear System Solution

To illustrate, consider the case of electric dipole ele-

ments polarized in the x direction. Let the array and the

medium both be symmetric such that for an observation

point in the yz plane (the H plane), ~~p~ = ~~~ = O,

where Vx~, ~yn, Fl,l are the components of V.. Fig. 2(a)

shows an example of such an array with normal axis z.

The optimum gain solution of 1) reduces exactly to

1*) = R-lVX) (4)

where (Vx = (V. 2 = [Vxl,. . . . Vx~]. This 1*) is the opti-

mum eigenvector of (3) in the H plane by a symmetry

argument. Andersen [8] discusses this solution for a focus

on the normal axis of an array in the above situation. In

the given geometry, the optimum 1) must also be dis-

tributed symmetrically, so that at the focus

(1~,) = (Iq) =0 (5)

Vx), V,), and ~) being similarly defined; then the total
field (ZV) = _f(IVx). The vector CI*) can be written as

cl”) = J“).(v*I*)
= VX}{F’’*YI*)+ VY)(V*J*) + ~){v*zI*}

= VX)(V*J*)

(5) being the sufficient condition for the last expression. In

our geometry, (3) becomes

g-lVx)(V*xI*) = RI*).

Since the multiplier of Vx) is a scalar, the optimum

eigenvector 1*) is uniquely determined by (4) along with

its real eigenvalue:

g = (V*XR-WX)

(or g = (IVX) if 1) from (4) has already been calculated).
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Fig. 2. Focusing array geometry. (a) Equispaced hexagonal array. (b)
Pattern cuts.

This formulation is identical to that described by Lo et al.

[1] for maxintizing the directive gain of a conventional

array. For a focus in the far field of an array of identical
elements, the closed-form matrix solution (4) must aP-

proach the optimum as the distance from the source to the
focus increases.

Consider a more general array in homogeneous space,

whose elements all radiate the same elliptical polarization

(6+ a~) in a desired direction (@,@). Then the optimum

solution converges to

I*)= R-lVO)
A

where ( VO= <V. 0 = [V&,. . . . VO~] as the focus recedes

infinity. This is because the vector Cl*) approaches

Cl*) = V). (V*l*) = (1+ la12)V@)(V*@I*)

to
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where V) = (8 + at) V@). Unit vectors 6 and ~ are defined

by the line from source to focus, and { Vol, 0... Vo~ } and a

are complex scalar quantities.

From (1) through (5), all of our formulation has been

exact, but in hyperthermia applications a solution to (3)

would be impractical because of the necessity of knowing

all three components of V.. It is simply not possible to

know all of the dielectric properties within a particular

volume of living tissue. A small probe might be temporar-

ily implanted at the focus in order to obtain enough

information about element contributions for a focusing

array to be effective. A monopole at the end of a very thin

coaxial line is a practical way to do this; a triply polarized

implant for UHF wavelengths is probably not feasible.

However, a reasonably approximate solution may be had

by utilizing the symmetric array example above with a

singly polarized receiver. It will be of interest to see how

the array focusing ability is affected by looking at patterns

and currents when the excitation of (4) is used instead of

the optimum. As will be shown, the results of optimizing

one dominant polarization follow very closely the opti-

mization of [E 12 even for foci out of the H plane.

B. Conjugate-Field Matching

Another method using one polarization is the

conjugate-field (retrodirective, or time-reversal) matching

scheme discussed by many authors [2]–[4]. Conjugate-field

matching amounts to ignoring mutual coupling in (4),

thereby eliminating the requirement of a linear system

solution for each desired focus since the matrix R is taken

to be diagonal. For identical elements, the solution be-

comes

I)= V*X) (6)

for dominant x polarization, implying a uniform cophasal

distribution in the far-field case. In the near as well as the

far field, (6) produces a good but not optimum IE[2

pattern, as we will show by comparison. Of course, the

exact matrix R becomes more nearly diagonal as element

spacing increases, so that for identical elements the conju-

gate-field excitation approaches that of (4) for the polar-

ization chosen.

C. Q-Factor and Sensitivity

Another useful parameter which depends on both the

array geometry and the excitation is the Q factor [1],

defined by

(II*)

‘= (IAI*)

where A is the resistance matrix due to radiation only; i.e.,

(lA1*) is the radiated power. For lossless elements A = R,
and if radiation in a single lossless medium is considered,

A is equivalent to the integral q- l(JCds over a large

sphere. The Q factor is proportional to the total ohmic loss

when elements are identical. However, if a case is consid-

ered where elements radiate in a Iossy medium, the Q

factor loses some of its meaning because ohmic loss is

distributed in the near field as well as within the elements.

The definition of radiation resistance in A becomes rather

arbitrary in such a case. In hyperthermia, one would desire

a protective “matching section” between array and tissue,

either a lossless slab of material or a (Iossy) layer of liquid

coolant (in which case one might want to integrate E x 11*

over the interface between coolant and tissue).

Perhaps a more useful parameter to compare between

different excitations is the sensitivity factor [1], defined as

(II*)

s= (ICI*)

which does not depend upon A, and which depends on the

well-defined input resistance matrix R only indirectly

through choice of 1). For identical elements, S is propor-

tional to ohmic loss divided by the total lE/ 2 at the desired

focus. S and Q both grow as mumal coupling increases,

becoming very large for supergain [1].

V. NUMERICAL RESULTS

By using a far-field approximation for individual ele-

ment patterns, one can observe qualitative effects on the

performance of a focusing array as individual parameters

are varied. We have modeled situations for near-field foci

with the 19-element x-polarized array shown in Fig. 2.

Calculated array patterns for different excitation methods

are compared in a lossy medium with a lossless matching

section in front of the array. For the model used in

approximating the interface effects, refer to the Appendix.

The relative permittivities chosen (1 and 1 – 0.3j) are

simply those of saline body water at around 2 GHz and a

reasonable matching section normalized to about 80~ ~. For

the applications we have in mind,, the most appropriate

pattern cuts are those parallel to the plane of the array.

As in the far-field situation, for element spacings less

than about A/2 the optimum and matrix-solution gains

for near-field focusing are much higher than that of the

conjugate field, but for larger element spacings the three

excitations all approach the same solution. Near-field fo-

cusing produces few nulls, less distinct side lobes, and

generally lower grating lobes, since the current distribution

is not progressively phased as in far-field beam steering.

E-plane scans demonstrate that the differences between

matrix solution and optimum excitation are very small. It

follows that a monopole probe could be used in practice to

optimize array performance. When the array is scanned

off-axis, significant focal shifts are predicted for a near-field

focus, especially in a lossy medium. The findings are

explained below.

An incident (COSd)~ pattern is assumed using identical

elements with symmetric E- and H-plane patterns; i.e.,

q~ = q~ = q, SOI that the relative pattern of an x-polarized

element n is

Vn- ~(COS 0,1) ‘( OnCOSf+.- i,, Sing$,I), 0< e,, <90°
n

(7)
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where the subscript n denotes dependence upon element

location. For elements less than a whole wavelength across,

the far-field approximation should be useful as near as 2A

away [9], [10]. For relative power studies in this paper, we

assume lossless elements and let q =1, Q = gS, and A = R

= j’(Cds, integrated over a large hemisphere. For integer

q, the R matrix of radiation resistance can be computed in

closed form, leading to the expressions [7]

(1

sin 8
R ~,, = 2T —

s
forq=O

(

sin f3 Cos8
R ,,ln = 27r — —

83 – Sz 1
forq=l

and

[( )
3

R =; ;–:mn sin S–~cos S
8- 1 forq=2

where 8 = kdw,,, the element separation in radians. The

wavenumber k must apply to a lossless medium in front of

the array with negligible element coupling due to backscat-

ter for this approximation to be worthwhile.

A. Power Decay awav from an Aperture

According to the scheme shown in Fig. 2, pattern plots

show cuts parallel to the array with Ill?12 in decibels on the

vertical axis, and wavelengths on the horizontal axis with
the focus centered at zero. For an axial focus (.xf = yf = O),

a pattern cut along @= 90° lies in the H plane. The origin

of the coordinate system coincides with the array center.

The elements are numbered as in Fig. 2(b).

Fig. 3 shows power contour plots in the H plane for the

same size aperture (2A diagonal) with different source

distributions. The element arrangement in Fig. 2(b) is

continued to three rings and a total of 37 elements 0.33A

apart. A 2A lossless matching section is incorporated, and

\E12 contours are computed 3 dB apart in the lossy region

for both optimum (near supergain [1]) and conjugate-field

excitations. In such a lossy medium, there is very little

difference in the decay rate away from the aperture regard-

less of the excitation method of an array, implying that

little can be done by way of excitation method to decrease

surface heating. With conjugate-field excitation, having

only 19 elements in the same size aperture leads to practi-

cally the same power contours, approximating spherical
wave propagation in the medium.

B. Focal Shift

In a lossless medium, the focal shift that occurs for

near-field array focusing is on the order of the focal shift

observed in front of parabolic reflectors, the latter caused

by the geometrical optics divergence factor [9] (see the

Appendix) competing with the phase-reinforcement princi-

ple. An r – 1 divergence factor in the near field contributes

to a focal shift toward the array. The situation is greatly

exaggerated by amplitude decay when the focus is in a

lossy medium. For the medium geometry sketched, pat-

terns are shown in Fig. 4 demonstrating the focal shift as

the array is scanned from foci at (2X, O,4A) to (4A, 0,4A).

A spacing of 0.53A and an element q = 2 were chosen.

Lateral focal shift versus off-axis scan distance for a range

of foci is plotted in Fig. 5. Note the considerably higher

shift for conjugate-field excitation compared to the opti-

mum. For the lossless medium case (not shown), the

maximum power level occurs roughly 20 percent closer to

the normal axis than the desired focus, and for the two-

medium case it occurs roughly 40 percent closer. In Fig. 6

the focal gains for Figs. 4 and 5 are plotted as the focus is
moved off-axis, i.e., the optimum gain at focus ( xf, 0, 4A )

versus Xf. The corresponding case with d = 0.8A is shown

on the same graph.

C. Grating Lobes

Although the excitation is no longer progressively phased

for foci in the near field, the distribution is evidently

progressive enough to produce grating lobes for certain

scan situations. If the element spacing and the angle from

the array center to the focus are such that a far-field scan

would produce visible grating lobes, then one should at

least be cautious in the near field. In Fig. 7, the element

spacing is fixed at d = 0.8A and the array is scanned to the

focus (4X, O,4A ), for which isotropic elements exhibit a

large grating lobe. While the grating lobe level might be

acceptable as far out as focus (3A, O,4A), a gain loss of

more than 5 dB from axial scan (see Fig. 6) would proba-

bly rule out such operation. For focusing near the array

axis, grating lobes are not apparent in planar pattern cuts,

but their effects are still there, heating the medium closer

to the interface. Nevertheless, it would be acceptable to

use elements more widely spaced than in a conventional

array provided that a satisfactory cooling method existed

to pump heat away from the surface.

VI. CONCLUSIONS

We have an exact theory of \E 12 gain optimization for a

general array focusing in an arbitrary medium. Mutual

coupling is accounted for, and elements may be nonidenti-

cal, may be placed anywhere, and may have any polariza-

tion. However, good results in a practical situation may be

obtained with a singly polarized array and copolarized

probe.

Accurate IEI 2 optimization at a focus is possible using a

probe that is singly polarized in the dominant direction. If

one can afford it, the most power-efficient system would

involve solving N simultaneous equations. The same phase

and amplitude measurements are needed for Ex ) in both

conjugate-field and matrix excitation methods. The slight

gain increase possible by monitoring all three polarizations

is probably not worth the trouble. We do not consider the

possibility of supergain.

Maximizing the power at one point does not imply that

that is the maximum power point over a region in space. A

hyperthermia array would primarily localize interior heat-

ing in planes parallel to the surface. If diseased tissue in a

body is at such a location that the array must be scanned,

the focal shift described earlier may arise and it would be
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Fig. 3. Power contour plots in the H plane for the sketched medium, in decibels relative to power at focus (O,O,4X ).

Aperture diagonal 2X. (a) Medium geometry; (b) 37 elements, d = 0.33A, optimum garn, focal power 2.73 dB above (c); (c)

37 elements, d = 0.33X, conjugate-field excitation; (d) 19 elements, d = 0.5k, conjugate-field excitation, focal power 0.39 dB
above (c).

necessary to scan the radiation past the desired focus. Of one described to keep the near fieldls of the elements away

course, an attempt to scan too far to the side is self-defeat- from healthy tissue. For deep power penetration it is

ing in a lossy medium. necessary to take away excess heat at the surface: it is

In this study we are interested in heating tissue inside of safest to assume that the power level will decrease in any

a body while minimizing the heating on the surface. It is direction away from a practical array, due to the high

therefore desirable to use a matching section such as the losses inherent in biological media.
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Fig. 4, E-plane lE]2 patterns in the medium sketched for different foci,

showing focal shift. Nineteen elements, d = 0.53A, q = 2, focus =
(x,, O,4A ), @= 0° cut. Optimum gain= solid line; matrix solution=
hatched line; conJugate-field = dashed line. (a) x,= 2~: (b) Xf = 4A.

APPENDIX

A practical geometrical optics approximation for propa-

gation across an interface between two arbitrarily lossy

media has been suggested by Gee et al. [7]. Given that

a point source in a homogeneous medium of complex k

will produce a spherical wave which propagates as

exp( – jkr )/ r in the far field, the field behavior appears

locally as a plane wave. With the addition of an interface

as in Fig. 8, an incident field

e —J.xkl Sln tj ‘Jzkl cos 01

(with (ll real) in medium 1 must propagate as

4 I I I I
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Fig. 5. Lateral focal shift as a function of scan. Nineteen elements.

d = 0.53A, q =2, focus= (xf,0,4k), @= 0° cut Optimum gain = solid
line: conyrgate-fie]d = dashed line,
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Fig. 6. Focal gain as a function of scan for d = 0.53A and 0.8X.
Nineteen elements. q =2, focus= (.x,, O,41). Optimum gain= solid
fine; conjugate-field = dashed line. (For d = 0.8A the difference is less
than 0.11 dB.)

in medium 2. If we decompose the propagation vector in

medium 2 into real and imaginary parts as k2 = ~ – ja,

then the amplitude and phase gradients,

and
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Fig. 8. Definition of ray parameters.

respectively, are not parallel unless arg k2 = arg kl. The

approximation used is that the observation point may be

taken to be on the vector ~; i.e., the phase behavior is

retained along kl from a point source and then along ~. A

numerical root-finding method is used to find 01, given the

source and observation points.

In all geometrical optics applications in tl@ paper, we

use the incident field from (7) with standard plane-wave

transmission coefficients and a divergence factor [9] which

describes the reduction in field strength caused by the

spreading of the wavefront between the point just inside

medium 2 where the “ray” crosses the interface and the

observation point. The divergence factor for the transmitt-
ed field is no longer rl/r, as in a single medium, but is

given by

rl tan f31
(DF)s

[(

dl tan $1 )1d2 tan Oz 1’2

p COS*61 + cos2e2

where

The angle 13zis measured between [3 and 2.

It can be shown [10] that the albove approximation is

good for the purposes of this work.
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